
The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 1

Web Server for Embedded Systems

After the “everybody-in-the-Internet-wave” now obviously follows the
“everything-in-the-Internet-wave”. The most coffee, vending and washing
machines are still not available about the worldwide net. However the embedded
Internet integration for remote maintenance and diagnostic as well as the so-called
M2M communication is growing with a considerable speed rate.

Just the remote maintenance and diagnostic of components and systems by Web
browsers via the Internet, or a local Intranet has a very high weight for many
development projects. In numerous development departments people work on
completely Web based configurations and services for embedded systems. The
remaining days of the classic user interface made by a small LC-display with front
panel and a few function keys are over. Through future evolutions in the field of
the mobile Internet, Bluetooth-based PANs (Personal Area Network's) and the
rapidly growing M2M communication (M2M=Machine-to-Machine) a further
innovating advance is to be expected.

The central function unit to get access on an embedded system via Web browser is
the Web server. Such Web servers bring the desired HTML pages (HTML=Hyper
Text Markup Language) and pictures over the worldwide Internet or a local
network to the Web browser. This happens HTTP-based (Hyper Text Transfer
Protocol). A TCP/IP protocol stack –that means it is based on sophisticated and
established standards– manages the entire communication. Web server (HTTP
server) and browser (HTTP client) build TCP/IP-applications. HTTP achieved a
phenomenal distribution in the last years. Meanwhile millions of user around the
world surf HTTP-based in the World Wide Web. Today almost every personal
computer offers the necessary assistance for this protocol. This status is valid
more and more for embedded systems also. The HTTP spreads up with a fast rate
too.

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 2

1. TCP/IP-based HTTP as Communication Platform

HTTP is a simple protocol that is based on a TCP/IP protocol stack (picture 1.A).
HTTP uses TCP (Transmission Control Protocol). TCP is a relative complex and
high-quality protocol to transfer data by the subordinate IP protocol. TCP itself
always guarantees a safeguarded connection between two communication partners
based on an extensive three-way-handshake procedure. As a result the data
transfer via HTTP is always protected. Due to the extensive TCP protocol
mechanisms HTTP offers only a low-grade performance.

 Figure 1: TCP/IP stack and HTTP programming model

HTTP is based on a simple client/server-concept. HTTP server and client
communicate via a TCP connection. As default TCP port value the port number
80 will be used. The server works completely passive. He waits for a request
(order) of a client. This request normally refers to the transmition of specific
HTML documents. This HTML documents possibly have to be generated
dynamically by CGI. As result of the requests, the server will answer with a
response that usually contains the desired HTML documents among others
(picture 1.B).

GET /test.htm HTTP/1.1
Accept]: image/gif, image/jpeg, */*
User selling agent: Mozilla/4.0
Host: 192.168.0.1

Listing 1.A: HTTP GET-request

HTTP/1.1 200 OK
Date: Mon, 06 Dec 1999 20:55:12 GMT
Server: Apache/1.3.6 (Linux)
Content-length: 82
Content-type: text/html

<html>
<head>
<title>Test-Seite</title>
</head>
<body>
Test-Seite

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 3

</body>
</html>

Listing 1.B: HTTP response as result of the GET-request from listing 1.A

HTTP requests normally consist of several text lines, which are transmitted to the
server by TCP. The listing 1.A shows an example. The first line characterizes the
request type (GET), the requested object (/test1.htm) and the used HTTP version
(HTTP/1.1). In the second request line the client tells the server, which kind of
files it is able to evaluate. The third line includes information about the client-
software. The fourth and last line of the request from listing 1.A is used to inform
the server about the IP address of the client. In according to the type of request
and the used client software there could follow some further lines. As an end of
the request a blank line is expected.

The HTTP responses as request answer mostly consist of two parts. At first there
is a header of individual lines of text. Then follows a content object (optional).
This content object maybe consists of some text lines –in case of a HTML file– or
a binary file when a GIF or JPEG image should be transferred. The first line of the
header is especially important. It works as status or error message. If an error
occurs, only the header or a part of it will be transmitted as answer.

2. Functional principle of a Web Server

Simplified a Web server can be imagined like a special kind of a file server.
Picture 2.A shows an overview. The Web server receives a HTTP GET-request
from the Web browser. By this request, a specific file is required as answer (see
step 1 into picture 2.A). After that, the Web server tries to get access on the file
system of the requested computer. Then it attempts to find the desired file (step 2).
After the successful search the Web server read the entire file (step 3) and
transmit it as an answer (HTTP response comprising of header and content object)
to the Web browser (step 4). If the Web server cannot find the appropriate file in
the file system, an error message (HTTP response which only contains the header)
is simply be send as response to the client.

Figure 2: Functional principle from Web server and browser

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 4

The web content is build by individual files. The base is build by static files with
HTML pages. Within such HTML files there are references to further files
embedded –these files are typically pictures in GIF or JPEG format. However,
also references to other objects, for example Java-Applets, are possible. After a
Web browser has received a HTML file of a Web server, this file will be
evaluated and then searched for external references. Now the steps 1 to 4 from
picture 2.A will run again for every external reference in order to request the
respective file from the corresponding Web server. Please note, that such a
reference consists of the name or IP address of a Web server (e.g. "dilnetpc.com"),
as well as the name of the desired file (e.g. "picture1.gif"). So virtually every
reference can refer to another Web server. In other words, a HTML file could be
located on the server "ssv-embedded.de" but the required picture -which is
external referenced by this HTML file- is located on the Web server
"dilnetpc.com". Finally this (worldwide) networking of separate objects is the
cause for the name World Wide Web (WWW). All files, which are required by a
Web server, are requested from a browser like the procedure shown on picture
2.A. Normally these files are stored in the file system of the server. The
Webmaster has to update these files from time to time.

A further elementary functionality of a Web server is the Common Gateway
Interface (CGI) -we have mentioned before. Originally this technology is made
only for simple forms, which are embedded into HTML pages. The data, resulting
from the padding of a form, will be transmitted to a Web server via HTTP-GET or
POST-request (see step 1 into picture 2.B). In such a GET- or POST-request the
name of the CGI program, which is needed for the evaluation of a form, is
fundamentally included. This program has to be on the Web server. Normally the
directory "/cgi-bin" is used as storage location.

As result of the GET- or POST-request the Web server starts the CGI program
located in the subdirectory "/cgi-bin" and delivers the received data in form of
parameters (step 2). The outputs of a CGI program are guided to the Web server
(step 3). Then the Web server sends them all as responses to the Web browser
(step 4).

3. Dynamic generated HTML Pages

In contradiction to a company Web site server, which informs people about the
product program and services by static pages and pictures, an embedded Web
server has to supply dynamically generated contents. The embedded Web server
will generate the dynamic pages in the moment of the first access by a browser.
How else could we check the actual temperature of a system via Internet? Static
HTML files are not interesting for an embedded Web server. The most
information about the firmware version and service instructions are stored in
HTML format. All other tasks are normally made via dynamic generated HTML.

There are two different technologies to generate a specific HTML page in the
moment of the request: First the so-called server-side-scripting and second the
CGI programming. At the server-side-scripting, script code is embedded into a
HTML page. If required, this code will be carried out on the server (server-sided).

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 5

For this, there are numerous script languages available. All these languages are
usable inside a HTML-page. In the Linux community PHP is used mostly. The
favourite of Microsoft is VBScript. It is also possible to insert Java directly into
HTML pages. Sun has named this technology JSP (Java Server Pages). The
HTML page with the script code is statically stored in the file system of the Web
server. Before this server file is delivered to the client, a special program replaces
the entire script code with dynamic generated standard HTML. The Web browser
will not see anything from the script language.

 Figure 3: Single steps of the Server-Side-Scripting

Picture 3 shows the single steps of the server-side-scripting. In step 1 the Web
browser requests a specific HTML file via HTTP GET-request. The Web server
recognizes the specific extension of the desired file (for example *.ASP or *.PHP
instead of *.HTM and/or *.HTML) and starts a so-called scripting engine (see
step 2). This program gets the desired HTML file including the script code from
the file system (step 3), carry out the script code and make a new HTML file
without script code (step 4). The included script code will be replaced by dynamic
generated HTML. This new HTML file will be read by the Web server (step 5)
and send to the Web browser (step 6). If a server-sided scripting is supposed to be
used by an embedded Web server, so you have to consider the necessary
additional resources. A simple example: In order to carry out the embedded PHP
code into a HTML page, additional program modules are necessary for the server.
A scripting engine together with the embedded Web server has to be stored in the
Flash memory chip of an embedded system. Through that, during run time more
main memory is required.

4. Web Server running under Linux

Once spoken about Web servers in connection with Linux most people
immediately think of Apache. After investigations of the Netcraft Survey this
program is the mostly used Web server worldwide. Apache is an enhancement of
the legendary NCSA server. The name Apache itself has nothing to do with Red
Indians. It is a construct from "A Patchy Server" because the first version was put
together from different code and patch files.

Moreover there are numerous other Web servers - even for Linux. Most of this are
standing under the GPL (like Apache) and can be used license free. A very
extensive overview you can find at "http://directory.google.com/". Every Web
server has his advantages and disadvantages. Some are developed for specific
functions and have very special qualities. Other distinguishes at best through their
reaction rate at many simultaneous requests, as well as the variety of their

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 6

configuration settings. Others are designed to need minimal resources and offer
very small setting possibilities, as well as only one connection to a client.

The most important thing by an embedded Web server is the actual resource
requirements. Sometimes embedded systems offer only minimal resources, which
mostly has to be shared with Linux. Meanwhile there are numerous high-
performance 32-bit-386/486-microcontroller or (Strong)ARM-based embedded
systems that own just 8 Mbytes RAM and 2 Mbytes Flash-ROM (picture 4).
Outgoing from this ROM (Read-only-Memory, i.e. Flash memory chips) a
complete Linux, based on a 2.2- or 2.4-Kernel with TCP/IP protocol stack and
Web server, will be booted. HTML pages and programs are also stored in the
ROM to generate the dynamic Web pages. The space requirements of an
embedded system are similar to a little bigger stamp. There it is quite
understandable that there is no place for a powerful Web server like Apache.

 Figure 4: Embedded Web Server Module with StrongARM and Linux

But also the capability of an Apache is not needed to visualize the counter of a
photocopier or the status of a percolator by Web servers and browsers. In most
cases a single Web server is quite enough. Two of such representatives are boa
(www.boa.org) and thttpd (www.acme.com). At first, both Web servers are used
in connection with embedded systems running under Linux. The configuration
settings for boa and thttpd are poor, but quite enough. By the way, the source code
is available to the customer. The practicable binary files for these servers are
always smaller than 80 Kbytes and can be integrated in the most embedded
systems without problems. For the dynamic generation of HTML pages both
servers only offer CGI (Common Gateway Interface) as enlargement. Further
technologies, like server-side-includes (SSI) are not available.

The great difference between an embedded Web server and Apache is, next to the
limited configuration settings, the maximal possible number of simultaneous
requests. High performance servers like Apache immediately make an own
process for every incoming call request of a client. Inside of this process all

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 7

further steps will then be executed. This requires a very good programming and a
lot of free memory resources during run time. But, on the other hand many Web
browsers can access such a Web server simultaneously. Embedded Web server
like boa and thttpd work only with one single process. If two users need to get
access onto a embedded Web server simultaneously, one of both have to wait a
few fractions of a second. But in the environment of the embedded systems that is
absolutely justifiable. In this case it is first of all a question of remote
maintenance, remote configuration and similar tasks. There are not many
simultaneous requests expected.

The DIL/NetPCs DNP/1110 – Using the Embedded Linux

SSV EMBEDDED SYSTEMS 8

List of Figures

Figure 1: TCP/IP stack and HTTP programming model
Figure 2: Functional principle from Web server and browser
Figure 3: Single steps of the Server-Side-Scripting
Figure 4: Embedded Web Server Module with StrongARM and Linux

Listings

Listing 1.A: HTTP GET-request
Listing 1.B: HTTP response as result of the GET-request from listing 1.A

Contact

SSV Embedded Systems
Heisterbergallee 72
D-30453 Hannover
Tel. +49-(0)511-40000-0
Fax. +49-(0)511-40000-40
Email: sales@ist1.de
Web: www.ssv-embedded.de

Document History (Sadnp05.Doc)

Revision Date Name

1.00 24.05.2002 First Version KDW

This document is meant only for the internal application. The contents of
this document can change any time without announcement. There is taken
over no guarantee for the accuracy of the statements. Copyright © SSV
EMBEDDED SYSTEMS 2002. All rights reserved.

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED 'AS
IS' WITHOUT WARRANTY OF ANY KIND. The user assumes the entire
risk as to the accuracy and the use of this document. Some names within
this document can be trademarks of their respective holders.

