
DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 1

Using coLinux to develop under Windows XP
A Linux PC is often required to program embedded Linux systems. This can
present unexpected problems for many experienced Windows users. A
DIL/NetPC-based embedded Linux application can be developed entirely
under Windows XP using the SSV coLinux Cross CD-ROM.

Linux as an embedded operating system has a user community that continues to
grow. However, the alternative operating system has not been able to establish
itself on PCs until now. Microsoft Windows is the standard here and it does not
appear that will change in the foreseeable future.

Software development for an embedded Linux system in most cases requires a
free license of GCC (GNU C/C++ compiler) and accessories. Many developers
find it disconcerting that the GNU tools are primarily available for Linux-based
PCs. Any attempt to make GCC run under Windows in order to program an
embedded Linux system has been fraught with problems until now. The popular
Cygwin – as a Unix/Linux emulation environment under Windows – is much too
slow and in most cases causes significant library and version conflicts. Despite the
high costs, commercial attempts by some companies to provide GCC as a
Windows application have not lead to any practical solutions. Even here, there are
typically significant library problems. As a result, many users have no other
alternative than to use a Linux distribution as a second operating system on the
Windows PC to be able to use GCC tools. Without some effort, this technically
straightforward solution is not feasible for large companies in particular, because
an IT department is responsible for the PCs. Users are not able to just install a
new operating system to boot instead of Windows.

Another obstacle is often times getting familiar with a new PC operating system.
Many questions can arise, such as: How can I change the network settings (e.g. IP

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 2

address, etc.)? Where can I find a Telnet client? Which editor should I use? How
can I later install other software components? The list could go on ad nauseam.
The bottom line is that significant orientation time is required for a knowledgeable
Windows user to get familiar with the new environment.

1. A Typical DIL/NetPC Development Environment

Figure 1 lists the most important tools and their use in an embedded Linux
development environment. A Linux-based PC is used to develop, edit and compile
the C/C++ source code using the GNU tools. The test is performed on the target
system, in this case an embedded Linux module from the DIL/NetPC family [1].
There is an Ethernet LAN or RS232 connection between the Linux module and
the PC. The LAN link is used primarily for file transfer and user dialog. FTP (File
Transfer Protocol) or TFTP (Trivial File Transfer Protocol) can be used, for
example, through the embedded Linux. Telnet is used for the dialog with the user
interface (shell) of an embedded Linux. A Telnet client is started on the PC, which
provides a simple (command line) interface (CLI = Command Linux interface) to
the embedded Linux in order to communicate with the software components of
the embedded system. The necessary server/client components for FTP, TFTP,
Telnet, etc. are available on both a PC-based Linux and in nearly any embedded
Linux.

Figure 1: A typical development environment for DIL/NetPCs

In addition to file transfer and the Telnet dialog, the Ethernet LAN connection is
also used between both computers for so-called remote debugging. There is no
need for a hardware debugger for application-oriented programming of an
embedded Linux system. The appropriate components for remote software testing
per LAN or RS232 connection are included in the GNU tools with GDB and
GDBserver.

With a DIL/NetPC, the RS232 connection between PC and Linux module is also
used for CLI-based communication with the boot loader. Such a boot loader (e.g.
U boot with the ARM-based DIL/NetPCs or dBUG with a DIL/NetPC with

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 3

ColdFire) is available in the Flash of a DIL/NetPC under the embedded Linux
operating system.

2. coLinux Replaces the Linux PC

An alternative to using a Linux PC is a free license of Cooperative Linux
(coLinux). This Linux project is a new approach to getting the Linux kernel to
run under Windows XP [2]. coLinux contains special Windows drivers, which
allow it to run under Windows XP as a guest operating system with all privileges.
For example, it can directly access the page tables and switch the PC processor
between the Windows programs and coLinux. The hardware is virtualized,
practically eliminating all access conflicts.

Figure 2: Creating a coLinux icon on the Windows desktop

The coLinux Cross Tools CD-ROM has been available from SSV Embedded
Systems since June 2005 and makes it possible use coLinux for software
development of DIL/NetPC-based embedded Linux applications. The CD-ROM
contains a complete preconfigured coLinux for Windows XP PCs in the \SSV-
colinux directory. Older Windows versions are not supported by coLinux.

SSV coLinux installation requires approx. 2 GB of available storage on the
Windows XP hard disk drive. The entire installation process is started in a single
step: simply launch the (batch) file \SSV-colinux\setupe.bat in Windows XP (File)
Explorer. The default installation directory on the Windows hard disk drive is
c:\Program Files\colinux\. Change the default to c:\colinux\.

After the individual installation steps are automatically executed and the
installation program has finished, an icon should be created on the Windows XP

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 4

desktop and properly configured for coLinux (Figure 2). The following command
line is used to start coLinux:

c:\colinux\colinux-daemon.exe –c config.xml

The command line should also be saved in the properties of the coLinux icon.
However, it can also be used to launch SSV coLinux directly at a Windows
command line.

3. coLinux First Impression

The hardware virtualized by coLinux includes a VGA text console (that is
displayed in a Windows XP window), network, hard disk drives (as normal files
under Windows) and a keyboard. When selecting the virtual hardware, a
configuration was consciously selected that is as minimal as possible in order to
avoid driver problems in Linux.

Figure 3: The coLinux VGA text console in Windows XP window

Figure 3 shows the interface of coLinux to be implemented on a Debian Linux
under Windows XP. Just a simple mouse click on the previously described icon
on the Windows XP desktop is needed to start the configuration. And in just a few
seconds, a complete Debian Linux is available in a Windows XP window. The
username root and password root are used to log in.

Figure 4: Windows and coLinux use a common directory

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 5

Windows and coLinux use a common directory on the hard disk drive (c:\colinux
from the Windows environment – the same directory is accessible under coLinux
under the name /windows). Any files in the directory are accessible from both
Windows and coLinux (Figure 4). However, the common hard disk drive space is
managed by Windows exclusively. coLinux does not access the hard disk drive
hardware directly. Consequently, there is no need for a separate coLinux partition.
A special driver (coFS = coLinux File System) is used by coLinux to access the
Windows hard disk drive.

It should be noted, however, that the coFS involves an asynchronous file system.
Write operations within the common directory under coLinux or Windows are
closed from view of the other operating system only after context is next switched
(surrendering control of the CPU to Windows or coLinux). For this reason, no
GCC makefile should directly access /windows under coLinux, if files are used by
the makefile that were previously written under Windows.

4. Compiling under coLinux via GCC

A coLinux for embedded Linux development typically contains the original GNU
tools for compiling C/C++ programs and corresponding libraries [3]. In addition
to the native GCC for x86 code, SSV coLinix contains Cross versions M68K-
ELF-GCC (M68K code, output format ELF) and ARM-ELF-GCC (code for
various ARM architectures in the ELF output format). The native GCC, for
example, can be used to program an ADNP/1520 with an embedded gateway
Linux. The M68KELF-GCC lends itself to software development for ColdFire
DIL/NetPCs under uClinux (DNP/5280, DNP/5282 and PNP/520). The Linux
control DIL/NetPC DNP/7520 is supported by the ARM-ELF-GCC. Other Cross
GCC versions can be subsequently added to SSV coLinux, as needed.

Figure 5: Initial steps with the compilers in SSV coLinux

A good first test of the various GNU tools of an SSV coLinux installation is to
create and compile a C program in the coLinux window. These steps, for example,
can be executed with the following entries:

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 6

cat > hello.c
#include <stdio.h>
#include <stdlib.h>

void main (void)
{
 printf (“Hello...\n”);
}
CTRL-D (ends the input of the C source text)
gcc –o hello hello.c

This input sequence results in a C source code file called hello.c. The file is then
compiled with the native GCC. The resulting program can be directly executed in
the coLinux window. Figure 5 illustrates this example. In this figure, M68K-ELF-
GCC is then called up to create an executable for a ColdFire DIL/NetPC from
hello.c. The uClinux executable hello is then moved to the /windows/root
directory. The file can then, for example, be transferred with TFTP to the
DNP/5280.

5. Other Auxiliary Tools

There are other tools on the SSV coLinux Cross Tools CD-ROM for DIL/NetPC
programming. The opens source editor PN (Programmers Notepad) is of
particular importance. The installation program for this auxiliary tool can be
found on the CD-ROM in the ProgrammersNotepad directory.

Figure 6: Editing with the open source editor PN (Programmers Notepad)

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 7

PN is capable of editing the C/C++ source code for an embedded Linux module in
the familiar Windows XP environment. Resulting source code files can be saved
in the common Windows directory c:\colinux. Additional subdirectories (e.g.
c:\colinux\root or even c:\colinux\transfer) should be created within c:\colinux for
the individual projects, as needed.

Another important resource on the SSV coLinux Cross Tools CD-ROM is a TFTP
server called TFTPD in the TFTP-Server-Win32 directory. The same server
application is also included on the starter kit CD-ROMs for the respective
DIL/NetPCs. TFTPD is used for TFTP-based file transfer over an Ethernet LAN
connection between PC and embedded Linux module. Figure 7 shows TFTPD in
use. It should be noted that this programs requires file transfer from a base
directory. The Browse button on the TFTP user interface is used to select the
directory.

Figure 7: The TFTP server is used for file transfer

All TFTP file transfers to and from DIL/NetPCs are based on the TFTPD base
directory. Therefore, c:\colinux or a subdirectory within c:\colinux must be
selected as the base directory to use TFTPD in conjunction with coLinux.

6. The Interaction between Tools

The coLinux window itself, the open source editor PN and a TFTP server TFTP
can be used together in such a way that the developer will practically never have
to leave the familiar Windows XP environment of the development PC. Figure 8
provides an overview of the interaction between the development tools that are
used in the coLinux-based development environment for DIL/NetPCs.

C/C++ source code is edited in Windows using the PN editor. This Windows
application organizes the source code files into projects. All source code is saved
in the directory c:\colinux, or a subdirectory within c:\colinux. A script file (build
script) is run in the coLinux window to compile the entire project. The script pulls
the appropriate source code files from the common directory, activates the GCC
using a make file and after successfully running the GCC writes the executable for

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 8

the embedded Linux system back to the common directory. The following is an
example of such a build script:

#!/bin/sh
cp /windows/root/ngsmtp1.c ngsmtp1.c
make all
mv /tftpboot/ngsmtp1 /windows/root/ngsmtp1
mv ngsmtp1.c ngsmtp1.bak
rm ngsmtp1.gdb

The second line of the build script copies C source code with the name ngsmtp1.c
from c:\colinux\root (/windows/root in coLinux) to the coLinux directory, in
which the build script was launched. The third line activates the GCC make. The
GCC make run creates an executable in the coLinux directory /tftpboot. The
fourth line moves the executable to the common directory c:\colinux\root
(/windows/root in coLinux), from where it can then be transferred per TFTP to the
DIL/NetPC. Such a build script is executed from the coLinux window.

Figure 8: The interaction between development tools

The user only has to launch the script file in the coLinux window. This essentially
eliminates any orientation in Linux as a PC operating system. The Windows
TFTP server TFTPD and the standard XP Telnet client in Figure 8 are used for
file transfer to the embedded Linux system and the shell access.

DIL/NetPC - Tips and Tricks: Using coLinux Cross Tools

SSV EMBEDDED SYSTEMS 9

Figures

Figure 1: A typical development environment for DIL/NetPCs
Figure 2: Creating a coLinux icon on the Windows desktop
Figure 3: The coLinux VGA text console in Windows XP window
Figure 4: Windows and coLinux use a common directory
Figure 5: Initial steps with the compilers in SSV coLinux
Figure 6: Editing with the open source editor PN (Programmers Notepad)
Figure 7: The TFTP server is used for file transfer
Figure 8: The interaction between development tools

References

[1] Web site on DIL/NetPCs: www.dilnetpc.com
[2] Web site on coLinux: http://www.colinux.org/
[3] Walter: Messen, Steuern, Regeln mit ARM-Mikrocontrollern. Franzis´ 2004.

Contact

SSV Embedded Systems
Heisterbergallee 72
D-30453 Hanover, Germany
Tel.: +49-(0)511-40000-0
Fax: +49-(0)511-40000-40
E-mail: sales@ist1.de
Web: www.ssv-embedded.de
Web: www.dilnetpc.com

Notes about This Document (coLinux-APN1.doc)

Revision Date Name
1.00 01.07.2005 Initial draft KDW
1.01 09.09.2005 Some spelling mistakes corrected / engl. translation. KDW

This document is intended for internal use only. The content of this
document may be changed at any time without notification. All content is
provided as is, with no warranty stated or implied regarding the quality or
accuracy of any content. Copyright © SSV EMBEDDED SYSTEMS and
Klaus-Dieter Walter 2005. All rights reserved.

All other brand names, product names, or trademarks belong to their
respective holders.

